%I
%S 1,2,3,7,8,12,14,18,19,23,29,33,38,44,45,49,51,55,60,66,70,81,86,92,
%T 97,101,103,107,112,118,119,122,123,138,140,144,148,149,155,159,166,
%U 171,175,181,190,192,196,208,216,218,222,227,234,237,248,253,259,260,274,285,286,296,301,311,322,323,338,344,348,353,363,370,375,379,390,396,400,407,416,422,427,433,438,453,457,459,464,468,475,478,500,501,511,527,531,542,546,548,563,568,574,579,585,589,600
%N Numbers k such that floor(nr+h) is prime, where r=(1+sqrt(5))/2 and h=1/2.
%e See A184859.
%t r=(1+5^(1/2))/2; h=1/2; s=r/(r1);
%t a[n_]:=Floor [n*r+h];
%t Table[a[n], {n, 1, 120}] (* A007067 *)
%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
%t t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
%t (* Lists t1, t2, t3 match A184859, A184860, A184861. *)
%Y Cf. A184859, A184861.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 23 2011
