login
A184860
Numbers k such that floor(nr+h) is prime, where r=(1+sqrt(5))/2 and h=1/2.
3
1, 2, 3, 7, 8, 12, 14, 18, 19, 23, 29, 33, 38, 44, 45, 49, 51, 55, 60, 66, 70, 81, 86, 92, 97, 101, 103, 107, 112, 118, 119, 122, 123, 138, 140, 144, 148, 149, 155, 159, 166, 171, 175, 181, 190, 192, 196, 208, 216, 218, 222, 227, 234, 237, 248, 253, 259, 260, 274, 285, 286, 296, 301, 311, 322, 323, 338, 344, 348, 353, 363, 370, 375, 379, 390, 396, 400, 407, 416, 422, 427, 433, 438, 453, 457, 459, 464, 468, 475, 478, 500, 501, 511, 527, 531, 542, 546, 548, 563, 568, 574, 579, 585, 589, 600
OFFSET
1,2
EXAMPLE
See A184859.
MATHEMATICA
r=(1+5^(1/2))/2; h=1/2; s=r/(r-1);
a[n_]:=Floor [n*r+h];
Table[a[n], {n, 1, 120}] (* A007067 *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
(* Lists t1, t2, t3 match A184859, A184860, A184861. *)
CROSSREFS
Sequence in context: A111101 A281017 A281018 * A242655 A145489 A003307
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 23 2011
STATUS
approved