This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184838 a(n) = n + floor(n*t) + floor(n*t^2) + floor(n*t^3) + floor(n/t), where t is the pentanacci constant. 5
 12, 28, 42, 58, 72, 88, 103, 117, 132, 147, 162, 178, 192, 208, 221, 237, 252, 267, 282, 297, 312, 328, 341, 357, 371, 387, 402, 417, 432, 445, 460, 476, 490, 506, 520, 536, 551, 565, 580, 595, 610, 626, 640, 656, 669, 685, 700, 715, 730, 745, 760, 775, 789, 805, 819, 835, 850, 865, 880, 893, 909, 924, 939, 954, 969, 984, 999, 1013, 1029, 1043, 1059, 1074, 1089, 1104, 1118, 1133, 1149, 1163, 1179, 1193, 1209, 1223, 1238, 1253, 1268, 1283, 1299, 1313, 1327, 1341, 1357, 1372, 1387, 1402, 1417, 1432, 1447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of five sequences that partition the positive integers. Given t is the pentanacci constant, then the following sequences are disjoint: . A184835(n) = n + [n/t] + [n/t^2] + [n/t^3] + [n/t^4], . A184836(n) = n + [n*t] + [n/t] + [n/t^2] + [n/t^3], . A184837(n) = n + [n*t] + [n*t^2] + [n/t] + [n/t^2], . A184838(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n/t], . A184839(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n*t^4], where []=floor. This is a special case of Clark Kimberling's results given in A184812. LINKS FORMULA Limit a(n)/n = t^4 = 14.937857588939362411757354... a(n) = n + floor(n*p/q) + floor(n*r/q) + floor(n*s/q) + floor(n*u/q), where p=t, q=t^2, r=t^3, s=t^4, u=t^5, and t is the pentanacci constant. EXAMPLE Given t = pentanacci constant, then t^4 = 1 + t + t^2 + t^3 + 1/t, t = 1.965948236645..., t^2 = 3.864952469169..., t^3 = 7.598296491482..., t^4 = 14.93785758893..., t^5 = 29.36705478623... PROG (PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3+x^4-x^5)[1])); n+floor(n*t)+floor(n*t^2)+floor(n*t^3)+floor(n/t)} CROSSREFS Cf. A184835, A184836, A184837, A184839; A184812, A103814. Sequence in context: A224613 A134618 A108405 * A044073 A044454 A098502 Adjacent sequences:  A184835 A184836 A184837 * A184839 A184840 A184841 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)