login
A184836
a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2) + floor(n/t^3), where t is the pentanacci constant.
5
2, 6, 9, 14, 17, 21, 24, 30, 33, 37, 40, 45, 48, 52, 55, 61, 64, 68, 71, 76, 79, 83, 87, 92, 95, 99, 102, 107, 110, 113, 118, 122, 125, 129, 133, 137, 140, 145, 149, 153, 156, 160, 164, 168, 171, 176, 180, 184, 187, 191, 195, 199, 202, 207, 211, 215, 218, 223, 226, 229, 234, 238, 242, 245, 249, 253, 257, 260, 265, 269, 273, 276, 280, 284, 288, 292, 296, 300, 304, 307, 311, 315, 319, 323, 327, 331, 335, 338, 342, 345, 349, 353, 358, 361, 365, 368, 373, 376, 381, 384, 389, 392, 396, 399, 404, 407, 412, 415, 420, 423
OFFSET
1,1
COMMENTS
This is one of five sequences that partition the positive integers.
Given t is the pentanacci constant, then the following sequences are disjoint:
. A184835(n) = n + [n/t] + [n/t^2] + [n/t^3] + [n/t^4],
. A184836(n) = n + [n*t] + [n/t] + [n/t^2] + [n/t^3],
. A184837(n) = n + [n*t] + [n*t^2] + [n/t] + [n/t^2],
. A184838(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n/t],
. A184839(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n*t^4], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.
FORMULA
Limit a(n)/n = t^2 = 3.8649524691694932164414964...
a(n) = n + floor(n*p/s) + floor(n*q/s) + floor(n*r/s) + floor(n*u/s), where p=t, q=t^2, r=t^3, s=t^4, u=t^5, and t is the pentanacci constant.
EXAMPLE
Given t = pentanacci constant, then t^2 = 1 + t + 1/t + 1/t^2 + 1/t^3,
t = 1.965948236645..., t^2 = 3.864952469169..., t^3 = 7.598296491482..., t^4 = 14.93785758893..., t^5 = 29.36705478623...
PROG
(PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3+x^4-x^5)[1])); n+floor(n*t)+floor(n/t)+floor(n/t^2)+floor(n/t^3)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 23 2011
STATUS
approved