

A184832


a(n) = smallest k such that A005117(n+1) = A005117(n) + (A005117(n) mod k), or 0 if no such k exists.


3



0, 0, 0, 2, 5, 4, 3, 3, 2, 13, 13, 3, 17, 2, 3, 4, 23, 2, 29, 29, 2, 3, 3, 2, 37, 37, 2, 41, 4, 3, 43, 7, 3, 53, 2, 3, 3, 2, 59, 2, 5, 5, 2, 3, 3, 2, 71, 2, 7, 4, 3, 3, 2, 5, 5, 3, 89, 2, 3, 3, 31, 2, 101, 101, 2, 3, 3, 2, 109, 109, 2, 113, 4, 3, 4, 11, 7, 5, 2, 3, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(n) is the "weight" of squarefree numbers.
The decomposition of squarefree numbers into weight * level + gap is A005117(n) = a(n) * A184834(n) + A076259(n) if a(n) > 0.


LINKS

Rémi Eismann, Table of n, a(n) for n = 1..10000


EXAMPLE

For n = 1 we have A005117(1) = 1, A005117(2) = 2; there is no k such that 2  1 = 1 = (1 mod k), hence a(1) = 0.
For n = 4 we have A005117(4) = 5, A005117(5) = 6; 2 is the smallest k such that 6  5 = 1 = (5 mod k), hence a(4) = 2.
For n = 23 we have A005117(23) = 35, A005117(24) = 37; 3 is the smallest k such that 37  35 = 2 = (35 mod k), hence a(23) = 3.


CROSSREFS

Cf. A005117, A076259, A184834, A184833, A117078, A117563, A001223, A118534.
Sequence in context: A100046 A025504 A272693 * A111449 A210800 A222235
Adjacent sequences: A184829 A184830 A184831 * A184833 A184834 A184835


KEYWORD

nonn


AUTHOR

Rémi Eismann, Jan 23 2011


STATUS

approved



