login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184832 a(n) = smallest k such that A005117(n+1) = A005117(n) + (A005117(n) mod k), or 0 if no such k exists. 3
0, 0, 0, 2, 5, 4, 3, 3, 2, 13, 13, 3, 17, 2, 3, 4, 23, 2, 29, 29, 2, 3, 3, 2, 37, 37, 2, 41, 4, 3, 43, 7, 3, 53, 2, 3, 3, 2, 59, 2, 5, 5, 2, 3, 3, 2, 71, 2, 7, 4, 3, 3, 2, 5, 5, 3, 89, 2, 3, 3, 31, 2, 101, 101, 2, 3, 3, 2, 109, 109, 2, 113, 4, 3, 4, 11, 7, 5, 2, 3, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n) is the "weight" of squarefree numbers.

The decomposition of squarefree numbers into weight * level + gap is A005117(n) = a(n) * A184834(n) + A076259(n) if a(n) > 0.

LINKS

Rémi Eismann, Table of n, a(n) for n = 1..10000

EXAMPLE

For n = 1 we have A005117(1) = 1, A005117(2) = 2; there is no k such that 2 - 1 = 1 = (1 mod k), hence a(1) = 0.

For n = 4 we have A005117(4) = 5, A005117(5) = 6; 2 is the smallest k such that 6 - 5 = 1 = (5 mod k), hence a(4) = 2.

For n = 23 we have A005117(23) = 35, A005117(24) = 37; 3 is the smallest k such that 37 - 35 = 2 = (35 mod k), hence a(23) = 3.

CROSSREFS

Cf. A005117, A076259, A184834, A184833, A117078, A117563, A001223, A118534.

Sequence in context: A100046 A025504 A272693 * A111449 A210800 A222235

Adjacent sequences:  A184829 A184830 A184831 * A184833 A184834 A184835

KEYWORD

nonn

AUTHOR

Rémi Eismann, Jan 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 09:12 EDT 2017. Contains 287093 sequences.