The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184830 a(n) = largest k such that A000961(n+1) = A000961(n) + (A000961(n) mod k), or 0 if no such k exists. 3
 0, 0, 2, 3, 3, 6, 7, 7, 9, 10, 15, 15, 15, 21, 23, 25, 27, 30, 27, 33, 39, 39, 45, 45, 47, 57, 58, 61, 63, 69, 67, 77, 79, 77, 81, 93, 99, 99, 105, 105, 105, 117, 123, 126, 125, 125, 135, 129, 147, 145, 151, 159, 165, 165, 167, 177, 171, 189, 189, 195 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS From the definition, a(n) = A000961(n) - A057820(n) if A000961(n) - A057820(n) > A057820(n), 0 otherwise where A000961 are the prime powers and A057820 are the gaps between prime powers. LINKS Rémi Eismann, Table of n, a(n) for n = 1..9790 EXAMPLE For n = 1 we have A000961(1) = 1, A000961(2) = 2; there is no k such that 2 - 1 = 1 = (1 mod k), hence a(1) = 0. For n = 3 we have A000961(3) = 3, A000961(4) = 4; 2 is the largest k such that 4 - 3 = 1 = (3 mod k), hence a(3) = 2; a(3) = 3 - 1 = 2. For n = 24 we have A000961(24) = 49, A000961(25) = 53; 45 is the largest k such that 53 - 49 = 4 = (49 mod k), hence a(24) = 45; a(24) = 49 - 4 = 45. MAPLE A184830 := proc(n)     if A000961(n) > 2*A057820(n) then         A000961(n)-A057820(n) ;     else         0;     end if; end proc: seq(A184830(n), n=1..40) ; # R. J. Mathar, Sep 23 2016 CROSSREFS Cf. A000961, A057820, A184829, A184831, A117078, A117563, A001223, A118534. Sequence in context: A117670 A181695 A322291 * A025499 A022474 A194189 Adjacent sequences:  A184827 A184828 A184829 * A184831 A184832 A184833 KEYWORD nonn,easy AUTHOR Rémi Eismann, Jan 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 17:36 EDT 2022. Contains 357001 sequences. (Running on oeis4.)