login
a(n) = largest k such that A000959(n+1) = A000959(n) + (A000959(n) mod k), or 0 if no such k exists.
3

%I #12 Mar 04 2018 05:50:35

%S 0,0,5,5,11,9,17,19,29,29,31,37,47,39,59,65,65,71,71,71,81,87,93,99,

%T 107,103,125,125,131,129,131,143,155,157,167,153,185,191,189,197,199,

%U 203,215,215,227,233,233,223,257,255,261,263

%N a(n) = largest k such that A000959(n+1) = A000959(n) + (A000959(n) mod k), or 0 if no such k exists.

%C From the definition, a(n) = A000959(n) - A031883(n) if A000959(n) - A031883(n) > A031883(n), 0 otherwise where A000959 are the lucky numbers and A031883 are the gaps between lucky numbers.

%H Rémi Eismann, <a href="/A184827/b184827.txt">Table of n, a(n) for n = 1..10000</a>

%e For n = 1 we have A000959(1) = 1, A000959(2) = 3; there is no k such that 3 - 1 = 2 = (1 mod k), hence a(1) = 0.

%e For n = 3 we have A000959(3) = 7, A000959(4) = 9; 5 is the largest k such that 9 - 7 = 2 = (7 mod k), hence a(3) = 5; a(3) = 7 -2 = 5.

%e For n = 24 we have A000959(24) = 105, A000959(25) = 111; 99 is the largest k such that 111 - 105 = 6 = (105 mod k), hence a(24) = 99; a(24) = 105 - 6 = 99.

%Y Cf. A000959, A031883, A130889, A184828, A117078, A117563, A001223, A118534.

%K nonn,easy

%O 1,3

%A _Rémi Eismann_, Jan 23 2011