OFFSET
1,1
COMMENTS
This is one of four sequences that partition the positive integers.
Given t is the tetranacci constant, then the following sequences are disjoint:
. A184823(n) = n + [n/t] + [n/t^2] + [n/t^3],
. A184824(n) = n + [n*t] + [n/t] + [n/t^2],
. A184825(n) = n + [n*t] + [n*t^2] + [n/t],
. A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.
FORMULA
Limit a(n)/n = t^2 = 3.7154951693276375317543272...
a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
EXAMPLE
Let t be the tetranacci constant, then t^2 = 1 + t + 1/t + 1/t^2 and:
t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
PROG
(PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n/t)+floor(n/t^2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 23 2011
STATUS
approved