login
A184810
Numbers m such that prime(m) has the form floor(k*r), where r=sqrt(2/3); complement of A184811.
3
2, 3, 4, 8, 9, 10, 13, 14, 15, 17, 18, 19, 22, 23, 24, 26, 27, 28, 31, 34, 38, 39, 41, 42, 45, 46, 48, 49, 52, 53, 55, 56, 59, 60, 61, 66, 68, 72, 75, 76, 78, 79, 81, 82, 85, 86, 88, 89, 90, 92, 95, 96, 98, 99, 100, 102, 103, 106, 108, 109, 110, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 126, 128, 130, 131, 134, 135, 137, 139, 141, 142, 146, 147, 148, 149, 151, 152, 156, 157, 159, 162, 164, 165, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 180
OFFSET
1,1
MATHEMATICA
r=(2/3)^(1/2); s=(3/2)^(1/2); (* complementary because of joint ranking of i*sqrt(2) and j*sqrt(3) *)
a[n_]:=n+Floor [n*r]; b[n_]:=n+Floor [n*s];
Table[a[n], {n, 1, 120}] (* A184808 *)
Table[b[n], {n, 1, 120}] (* A184809 *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]
t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]
t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 300}]; t6
(* t3 and t6 match A184810 and A184811 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 22 2011
STATUS
approved