login
A184786
Let A(x) satisfy: A(x) = 1 + x*A(x)^(phi^2) where phi = (sqrt(5)+1)/2, then this sequence equals the integer part of the coefficients of A(x).
1
1, 1, 2, 8, 35, 147, 654, 3009, 14219, 68605, 336623, 1674517, 8425573, 42806200, 219285459, 1131431170, 5874504011, 30670279153, 160916320637, 847994498527, 4486473924741, 23821682237692, 126897559943046, 677992017255423
OFFSET
0,3
COMMENTS
Limit a(n+1)/a(n) = phi^(phi+2) = (phi+1)^(phi+1)/phi^phi = 5.7032759...
FORMULA
a(n) = floor( binomial(phi^2*n, n)/(phi*n+1) ) where phi = (sqrt(5)+1)/2.
EXAMPLE
G.f.: A(x) = 1 + x + c2*x^2 + c3*x^3 + c3*x^4 + c5*x^5 +...
A(x)^(phi^2) = 1 + c2*x + c3*x^2 + c4*x^3 + c5*x^4 + c6*x^5 +...
where the coefficients begin:
c2 = 2.6180339887..., c3 = 8.9721359549..., c4 = 35.015865823...,
c5 = 147.58190992..., c6 = 654.49854850..., c7 = 3009.5978243...,
c8 = 14219.000049..., c9 = 68605.600329..., c10 = 336623.1131..., ...;
the floor of the coefficients of A(x) forms this sequence.
PROG
(PARI) {a(n)=local(phi=(1+sqrt(5))/2); if(n<0, 0, floor(binomial(phi^2*n, n)/(phi*n+1)))}
CROSSREFS
Cf. A184785.
Sequence in context: A037723 A037618 A326294 * A082759 A243204 A279013
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2011
STATUS
approved