%I #6 Mar 30 2012 17:25:56
%S 0,0,16,13,26,26,18,40,43,40,48,41,60,64,66,65,74,74,64,86,97,96,99,
%T 100,106,112,115,110,123,120,122,129,146,143,152,144,163,160,169,170,
%U 170,173,168,178,184,186,185,183,202,202,214
%N a(n) = largest k such that A014612(n+1) = A014612(n) + (A014612(n) mod k), or 0 if no such k exists.
%C From the definition, a(n) = A014612(n) - A114403(n) if A014612(n) - A114403(n) > A114403(n), 0 otherwise where A014612 are the 3-almost primes and A114403 are the gaps between 3-almost primes.
%H Rémi Eismann, <a href="/A184752/b184752.txt">Table of n, a(n) for n = 1..10000</a>
%e For n = 1 we have A014612(1) = 8, A014612(2) = 12; there is no k such that 12 - 8 = 4 = (8 mod k), hence a(1) = 0.
%e For n = 3 we have A014612(3) = 18, A014612(4) = 20; 16 is the largest k such that 20 - 18 = 2 = (18 mod k), hence a(3) = 16.
%e For n = 21 we have A014612(21) = 98, A014612(22) = 99; 97 is the largest k such that 99 - 98 = 1 = (97 mod k), hence a(21) = 97.
%Y Cf. A014612, A114403, A130650, A184753, A117078, A117563, A001223, A118534.
%K nonn
%O 1,3
%A _Rémi Eismann_, Jan 21 2011