This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184750 a(n) = largest k such that A000326(n+1) = A000326(n) + (A000326(n) mod k), or 0 if no such k exists. 3
 0, 0, 0, 0, 19, 32, 48, 67, 89, 114, 142, 173, 207, 244, 284, 327, 373, 422, 474, 529, 587, 648, 712, 779, 849, 922, 998, 1077, 1159, 1244, 1332, 1423, 1517, 1614, 1714, 1817, 1923, 2032, 2144, 2259, 2377, 2498, 2622, 2749 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS From the definition, a(n) = A000326(n) - A016777(n) if A000326(n) - A016777(n) > A016777(n), 0 otherwise, where A000326 are the pentagonal numbers and A016777 are the gaps between pentagonal numbers: 3n + 1. LINKS Rémi Eismann, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = (3n^2-7n-2)/2 for n >= 5 and a(n) = 0 for n <= 4. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>7. G.f.: x^5*(9*x^2-25*x+19) / (1-x)^3. - Colin Barker, Apr 05 2014 a(n) = A000326(n) - A016777(n), n>=5, (see a comment above). - Wolfdieter Lang, Apr 19 2014 EXAMPLE For n = 3 we have A000326(3) = 12, A000326(4) = 22; there is no k such that 22 - 12 = 10 = (12 mod k), hence a(3) = 0. For n = 5 we have A000326(5) = 35, A000326(6) = 51; 19 is the largest k such that 51 - 35 = 16 = (35 mod k), hence a(5) = 19; a(5) = (75-35-2)/2 = 19. For n = 25 we have A000326(25) = 925, A000326(26) = 1001; 849 is the largest k such that 1001 - 925 = 76 = (925 mod k), hence a(25) = 849; a(25) = (1875-175-2)/2 = 849. MAPLE A184750:=n->(3*n^2 - 7*n - 2)*signum(floor(n/5))/2; seq(A184750(n), n=1..50); # Wesley Ivan Hurt, Apr 05 2014 MATHEMATICA Table[(3 n^2 - 7 n - 2) Sign[Floor[n/5]]/2, {n, 50}] (* Wesley Ivan Hurt, Apr 05 2014 *) PROG (PARI) concat([0, 0, 0, 0], Vec(-x^5*(9*x^2-25*x+19)/(x-1)^3 + O(x^100))) \\ Colin Barker, Apr 05 2014 CROSSREFS Cf. A000326, A016777, A133151, A184751, A117078, A117563, A001223, A118534. Sequence in context: A146659 A160220 A133151 * A101063 A061962 A272910 Adjacent sequences:  A184747 A184748 A184749 * A184751 A184752 A184753 KEYWORD nonn,easy AUTHOR Rémi Eismann, Jan 21 2011 EXTENSIONS Edited - Wolfdieter Lang, Apr 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 17 06:45 EST 2018. Contains 318192 sequences. (Running on oeis4.)