login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3; complement of A184735.
4

%I #7 Mar 30 2012 18:57:17

%S 1,3,5,6,8,10,11,13,14,16,18,19,21,22,24,26,27,29,31,32,34,35,37,39,

%T 40,42,44,45,47,48,50,52,53,55,56,58,60,61,63,65,66,68,69,71,73,74,76,

%U 77,79,81,82,84,86,87,89,90,92,94,95,97,99,100,102,103,105,107,108,110,111,113,115,116,118,120,121,123,124,126,128,129,131,133,134,136,137,139,141,142,144,145,147,149,150,152,154,155,157,158,160,162,163,165,166,168,170,171,173,175,176,178,179,181,183,184,186,188,189,191,192,194

%N a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3; complement of A184735.

%C Differs from A184582 first at index n=137. - R. J. Mathar, Jan 29 2011

%F a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3.

%t r=(1+sqrt(5))/2, h=1/3; s=r/(r-1);

%t Table[Floor[n*r+h],{n,1,120}] (* A184734 *)

%t Table[Floor[n*s+h-h*s],{n,1,120}] (*A184735 *)

%Y Cf. A184735, A184658.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 20 2011