This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184731 a(n) = Sum_{k=0..n} C(n,k)^(k+1). 8
 1, 2, 6, 38, 490, 14152, 969444, 140621476, 46041241698, 36363843928316, 62022250535177416, 236043875222171125276, 2205302277098968939256248, 45728754995013679582534494332, 2070631745797418828103776968679204 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..74 FORMULA Forms the logarithmic derivative of A184730 (ignoring the initial term). Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.53362806511..., where r = 0.70350607643... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Jan 29 2014 EXAMPLE The terms begin: a(0) = 1; a(1) = 1 + 1^2 = 2; a(2) = 1 + 2^2 + 1^3 = 6; a(3) = 1 + 3^2 + 3^3 + 1^4 = 38; a(4) = 1 + 4^2 + 6^3 + 4^4 + 1^5 = 490; a(5) = 1 + 5^2 + 10^3 + 10^4 + 5^5 + 1^6 = 14152. MATHEMATICA Table[Sum[Binomial[n, k]^(k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 29 2014 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)^(k+1))} CROSSREFS Cf. A184730, A167008, A220359. Sequence in context: A032111 A013703 A002031 * A005738 A055704 A005740 Adjacent sequences:  A184728 A184729 A184730 * A184732 A184733 A184734 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 12:45 EDT 2019. Contains 327170 sequences. (Running on oeis4.)