This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184630 Floor(1/{(6+n^4)^(1/4)}), where {}=fractional part. 0
 1, 6, 18, 43, 83, 144, 228, 341, 486, 666, 887, 1152, 1464, 1829, 2250, 2730, 3275, 3888, 4572, 5333, 6174, 7098, 8111, 9216, 10416, 11717, 13122, 14634, 16259, 18000, 19860, 21845, 23958, 26202, 28583, 31104, 33768, 36581, 39546, 42666, 45947, 49392, 53004, 56789, 60750, 64890, 69215, 73728, 78432, 83333, 88434 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n)=floor(1/{(6+n^4)^(1/4)}), where {}=fractional part. It appears that a(n)=3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=11, which implies a(n) = (2*n^3-1+A049347(n))/3 for n>=5. MATHEMATICA p[n_]:=FractionalPart[(n^4+6)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}] FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] CROSSREFS Cf. A184536. Sequence in context: A011930 A068293 A191101 * A009957 A011929 A070735 Adjacent sequences:  A184627 A184628 A184629 * A184631 A184632 A184633 KEYWORD nonn AUTHOR Clark Kimberling, Jan 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .