login
A184623
a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=-1/3; complement of A184622.
2
4, 7, 11, 14, 17, 21, 24, 28, 31, 34, 38, 41, 45, 48, 52, 55, 58, 62, 65, 69, 72, 75, 79, 82, 86, 89, 92, 96, 99, 103, 106, 110, 113, 116, 120, 123, 127, 130, 133, 137, 140, 144, 147, 151, 154, 157, 161, 164, 168, 171, 174, 178, 181, 185, 188, 192, 195, 198, 202, 205, 209, 212, 215, 219, 222, 226, 229, 232, 236, 239, 243, 246, 250, 253, 256, 260, 263, 267, 270, 273, 277, 280, 284, 287, 291, 294, 297, 301, 304, 308, 311, 314, 318, 321, 325, 328, 331, 335, 338, 342, 345, 349, 352, 355, 359, 362, 366, 369, 372, 376, 379, 383, 386, 390, 393, 396, 400
OFFSET
1,1
LINKS
FORMULA
a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=-1/3.
MATHEMATICA
r=2^(1/2); h=-1/3; s=r/(r-1);
Table[Floor[n*r+h], {n, 1, 120}] (* A184622 *)
Table[Floor[n*s+h-h*s], {n, 1, 120}] (* A184623 *)
PROG
(PARI) vector(120, n, floor((n+1/3)*(2+sqrt(2)) - 1/3)) \\ G. C. Greubel, Aug 18 2018
(Magma) [Floor((n+1/3)*(2+Sqrt(2)) - 1/3): n in [1..120]]; // G. C. Greubel, Aug 18 2018
CROSSREFS
Sequence in context: A081834 A078309 A195171 * A184581 A310725 A028373
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 18 2011
STATUS
approved