login
a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/4; complement of A184620.
2

%I #10 Sep 08 2022 08:45:55

%S 2,6,9,13,16,19,23,26,30,33,36,40,43,47,50,54,57,60,64,67,71,74,77,81,

%T 84,88,91,94,98,101,105,108,112,115,118,122,125,129,132,135,139,142,

%U 146,149,153,156,159,163,166,170,173,176,180,183,187,190,194,197,200,204,207,211,214,217,221,224,228,231,234,238,241,245,248,252,255,258,262,265,269,272,275,279,282,286,289,293,296,299,303,306,310,313,316,320,323,327,330,333,337,340,344,347,351,354,357,361,364,368,371,374,378,381,385,388,392,395,398,402,405,409

%N a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/4; complement of A184620.

%H G. C. Greubel, <a href="/A184621/b184621.txt">Table of n, a(n) for n = 1..10000</a>

%t r=2^(1/2); h=1/4; s=r/(r-1);

%t Table[Floor[n*r+h],{n,1,120}] (* A184620 *)

%t Table[Floor[n*s+h-h*s],{n,1,120}] (* A184621 *)

%o (PARI) vector(120, n, floor((n-1/4)*(2+sqrt(2)) + 1/4)) \\ _G. C. Greubel_, Aug 18 2018

%o (Magma) [Floor((n-1/4)*(2+Sqrt(2)) +1/4): n in [1..120]]; // _G. C. Greubel_, Aug 18 2018

%Y Cf. A184618, A184620.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 18 2011