login
A184586
a(n) = floor((n-1/2)*r), where r=sqrt(5); complement of A184587.
2
1, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 32, 34, 36, 39, 41, 43, 45, 48, 50, 52, 54, 57, 59, 61, 63, 65, 68, 70, 72, 74, 77, 79, 81, 83, 86, 88, 90, 92, 95, 97, 99, 101, 103, 106, 108, 110, 112, 115, 117, 119, 121, 124, 126, 128, 130, 133, 135, 137, 139, 141, 144, 146, 148, 150, 153, 155, 157, 159, 162, 164, 166, 168, 171, 173, 175, 177, 180, 182, 184, 186, 188, 191, 193, 195, 197, 200, 202, 204, 206, 209, 211, 213, 215, 218, 220, 222, 224, 226, 229, 231, 233, 235, 238, 240, 242, 244, 247, 249, 251, 253, 256, 258, 260, 262, 264, 267
OFFSET
1,2
COMMENTS
r = sqrt(5) and s = (5+sqrt(5))/4 form a Beatty pair. This yields the pair of complementary homogeneous Beatty sequences A022839 and A108598. From a theorem of Thoralf Skolem follows that (a(n)) and A184587 are complementary inhomogeneous Beatty sequences. - Michel Dekking, Sep 08 2017
FORMULA
a(n)=floor[(n-1/2)r], where r=sqrt(5).
MATHEMATICA
r=5^(1/2); c=1/2; s=r/(r-1);
Table[Floor[n*r-c*r], {n, 1, 120}] (* A184586 *)
Table[Floor[n*s+c*s], {n, 1, 120}] (* A184587 *)
CROSSREFS
Cf. A184587.
Sequence in context: A225240 A104309 A306683 * A190511 A260466 A033035
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 17 2011
EXTENSIONS
Name and formula corrected by Michel Dekking, Sep 08 2017
STATUS
approved