%I #4 Mar 30 2012 18:57:16
%S 2,4,7,9,12,15,17,20,23,25,28,30,33,36,38,41,43,46,49,51,54,57,59,62,
%T 64,67,70,72,75,78,80,83,85,88,91,93,96,98,101,104,106,109,112,114,
%U 117,119,122,125,127,130,132,135,138,140,143,146,148,151,153,156,159,161,164,167,169,172,174,177,180,182,185,187,190,193,195,198,201,203,206,208,211,214,216,219,222,224,227,229,232,235,237,240,242,245,248,250,253,256,258,261,263,266,269,271,274,276,279,282,284,287,290,292,295,297,300,303,305,308,311,313
%N floor[(n-1/5)(1+r)], where r=(1+sqrt(5))/2; complement of A184582.
%F a(n)=floor[(n-1/5)(1+r)], where r=(1+sqrt(5))/2.
%t r=(1+5^(1/2))/2; c=-1/5; s=r/(r-1);
%t Table[Floor[n*r-c*r],{n,1,120}] (* A184582 *)
%t Table[Floor[n*s+c*s],{n,1,120}] (* A184583 *)
%Y Cf. A184582.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jan 17 2011