%I #4 Mar 30 2012 18:57:16
%S 1,2,3,4,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,24,25,26,27,28,29,
%T 31,32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,
%U 58,59,60,62,63,64,65,66,68,69,70,71,72,74,75,76,77,78,80,81,82,83,84,86,87,88,89,90,91,93,94,95,96,97,99,100,101,102,103,105,106,107,108,109,111,112,113,114,115,117,118,119,120,121,122,124,125,126,127,128,130,131,132,133,134,136,137,138,139,140,142,143
%N Lower s-Wythoff sequence, where s=5n-1. Complement of A184525.
%C See A184117 for the definition of lower and upper s-Wythoff sequences.
%t k = 5; r = 1; d = Sqrt[4 + k^2];
%t a[n_] := Floor[(1/2) (d + 2 - k) (n + r/(d + 2))];
%t b[n_] := Floor[(1/2) (d + 2 + k) (n - r/(d + 2))];
%t Table[a[n], {n, 120}]
%t Table[b[n], {n, 120}]
%Y Cf. A184117, A184525.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 16 2011