%I #7 Mar 30 2012 18:57:13
%S 1,2,3,5,6,7,9,10,11,13,14,15,16,18,19,20,22,23,24,26,27,28,29,31,32,
%T 33,35,36,37,39,40,41,42,44,45,46,48,49,50,52,53,54,56,57,58,59,61,62,
%U 63,65,66,67,69,70,71,72,74,75,76,78,79,80,82,83,84,85,87,88,89,91,92,93,95,96,97,99,100,101,102,104,105,106,108,109,110,112,113,114,115,117,118,119,121,122,123,125,126,127,128,130,131,132,134,135,136,138,139,140,142,143,144,145,147,148,149,151,152,153,155,156
%N Lower s-Wythoff sequence, where s(n)=3n. Complement of A001956.
%C A184480(n)=A001955(n) for n<43.
%C See A184117 for the definition of lower and upper Wythoff sequences.
%F a(n)=floor[n*(-1+sqrt(13))/2].
%F b(n)=floor[n*(5+sqrt(13))/2]=A001956(n).
%t k=3; r=0; d=Sqrt[4+k^2];
%t a[n_]:=Floor[(1/2)(d+2-k)(n+r/(d+2))];
%t b[n_]:=Floor[(1/2)(d+2+k)(n-r/(d+2))];
%t Table[a[n],{n,120}]
%t Table[b[n],{n,120}]
%Y Cf. A184117.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 15 2011