login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184418 Convolution square of A040001. 1
1, 2, 5, 6, 10, 10, 15, 14, 20, 18, 25, 22, 30, 26, 35, 30, 40, 34, 45, 38, 50, 42, 55, 46, 60, 50, 65, 54, 70, 58, 75, 62, 80, 66, 85, 70, 90, 74, 95, 78, 100, 82, 105, 86, 110, 90, 115, 94, 120, 98, 125, 102, 130, 106, 135, 110, 140, 114, 145, 118, 150, 122, 155, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..63.

M. Somos, Rational Function Multiplicative Coefficients

Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).

FORMULA

G.f.: (1 + x + x^2)^2 / (1 - x^2)^2 = 1 + x * (x + 2) * (2*x + 1) / (1 - x^2)^2. a(-n) = -a(n) except a(0) = 2.

Euler transform of length 3 sequence [ 2, 2, -2].

a(n) = 2 * b(n) where b() is multiplicative with b(2^e) = 5 * 2^(e-2) if e>0, b(p^e) = p^e if p>2.

a(2*n + 1) = 4*n + 2, a(2*n) = 5*n except a(0) = 2.

a(n) = (9+(-1)^n)*n/4 = (n/2)*A010710(n+1) for n>0.  - Bruno Berselli, Mar 24 2011

EXAMPLE

1 + 2*x + 5*x^2 + 6*x^3 + 10*x^4 + 10*x^5 + 15*x^6 + 14*x^7 + 20*x^8 + ...

MATHEMATICA

LinearRecurrence[{0, 2, 0, -1}, {1, 2, 5, 6, 10}, 80] (* Harvey P. Dale, Jul 03 2017 *)

PROG

(PARI) {a(n) = (n==0) + n * ([ 5/2, 2] [n%2 + 1])}

(PARI) {a(n) = if( n==0, 1, sign(n) * polcoeff( (1 + x + x^2)^2 / (1 - x^2)^2 + x * O(x^abs(n)), abs(n)))}

CROSSREFS

Sequence in context: A226810 A054463 A007503 * A112967 A244731 A109150

Adjacent sequences:  A184415 A184416 A184417 * A184419 A184420 A184421

KEYWORD

nonn

AUTHOR

Michael Somos, Feb 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:08 EST 2017. Contains 294853 sequences.