OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)!^2*(x/2)^n.
G.f. satisfies: [x^n] A(x)^(n+1)/(n+1) = (n+1)!^2/2^n = A184358(n).
EXAMPLE
PROG
(PARI) {a(n)=polcoeff(x/serreverse(x*sum(m=0, n+1, (m+1)!^2*(x/2)^m)+x^2*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 16 2011
STATUS
approved