login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184327 a(1)=1, a(2)=17; thereafter a(n) = 6*a(n-1)-a(n-2)+c, where c=-4 if n is odd, c=12 if n is even. 1
1, 17, 97, 577, 3361, 19601, 114241, 665857, 3880897, 22619537, 131836321, 768398401, 4478554081, 26102926097, 152139002497, 886731088897, 5168247530881, 30122754096401, 175568277047521, 1023286908188737, 5964153172084897, 34761632124320657 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62. See Table 3, {y_n}.

Index entries for linear recurrences with constant coefficients, signature (6,0,-6,1).

FORMULA

From Bruno Berselli, Dec 26 2012: (Start)

G.f.: x*(1+11*x-5*x^2+x^3)/((1-x)*(1+x)*(1-6*x+x^2)).

a(n) = a(-n) = 6*a(n-1)-6*a(n-3)+a(n-4).

a(n) = ((1+sqrt(2))^(2n)+(1-sqrt(2))^(2n))/2+(-1)^n-1.

a(n) = 2*A090390(n)-1. (End)

MATHEMATICA

CoefficientList[Series[(1 + 11 x - 5 x^2 + x^3)/((1 - x) (1 + x) (1 - 6 x + x^2)), {x, 0, 24}], x] (* Bruno Berselli, Dec 26 2012 *)

PROG

(MAGMA) /* By definition: */ a:=[1, 17]; c:=func<n | IsOdd(n) select -4 else 12>; [n le 2 select a[n] else 6*Self(n-1)-Self(n-2)+c(n): n in [1..22]]; // Bruno Berselli, Dec 26 2012

CROSSREFS

Sequence in context: A165347 A008514 A152913 * A262207 A282997 A231667

Adjacent sequences:  A184324 A184325 A184326 * A184328 A184329 A184330

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 23 2012

EXTENSIONS

Edited from Bruno Berselli, Dec 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 00:49 EDT 2019. Contains 325189 sequences. (Running on oeis4.)