%I #19 Jan 20 2018 16:14:28
%S 14,362,14624,699600,35792568,1908897152,104715443852,5864063066500,
%T 333599974922264,19215358463836552,1117984489446008100,
%U 65588423376054708480,3874762242361630560584,230271584688657874664612,13754889325393505198471808,825293359523595646115953700
%N Number of distinct n X 6 toroidal binary arrays.
%H Vaclav Kotesovec, <a href="/A184268/b184268.txt">Table of n, a(n) for n = 1..550</a>
%H S. N. Ethier, <a href="http://arxiv.org/abs/1301.2352">Counting toroidal binary arrays</a>, arXiv preprint arXiv:1301.2352, 2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">J. Int. Seq. 16 (2013) #13.4.7</a> .
%F a(n) ~ 64^n / (6*n). - _Vaclav Kotesovec_, Sep 04 2014
%p with(numtheory):
%p a:= n-> add(add(phi(c)*phi(d) *2^(6*n/ilcm(c, d)),
%p d=divisors(n)), c=[1,2,3,6])/(6*n):
%p seq(a(n), n=1..25); # _Alois P. Heinz_, Aug 25 2012
%Y Column 6 of A184271.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 10 2011
%E More terms from _Alois P. Heinz_, Aug 25 2012