login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184218 a(n) = largest k such that A000217(n+1) = A000217(n) + (A000217(n) mod k), or 0 if no such k exists. 2
0, 0, 0, 0, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

From the definition, a(n) = A000217(n) - (n + 1) if A000217(n) - (n + 1) > (n + 1), or 0 otherwise, where A000217 are the triangular numbers.

LINKS

Rémi Eismann, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = (n+1)*(n-2)/2 = A000096(n-2) for n >= 5 and a(n) = 0 for n <= 4. - M. F. Hasler, Jan 10 2011

EXAMPLE

For n = 3 we have A000217(3) = 6, A000217(4) = 10; there is no k such that 10 - 6 = 4 = (6 mod k), hence a(3) = 0.

For n = 5 we have A000217(5) = 15, A000217(6) = 21; 9 is the largest k such that 21 - 15 = 6 = (15 mod k), hence a(5) = 9; a(5) = A000217(5) - (5 + 1) = 15 - 6 = 9.

For n = 24 we have A000217(24) = 300, A000217(25) = 325; 275 is the largest k such that 325 - 300 = 25 = (300 mod k), hence a(24) = 275; a(24) = A000217(24) - (24 + 1) = 275.

CROSSREFS

Cf. essentially the same as A000096, A000217, A000027, A130703, A184219, A118534, A117078, A117563, A001223.

Sequence in context: A173792 A034703 A006624 * A186778 A070552 A001198

Adjacent sequences:  A184215 A184216 A184217 * A184219 A184220 A184221

KEYWORD

nonn,easy

AUTHOR

Rémi Eismann, Jan 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 31 07:43 EDT 2014. Contains 245083 sequences.