This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184185 Number of permutations of {1,2,...,n} having no cycles of the form (i, i+1, i+2, ..., i+j-1) (j>=1). 1
 1, 0, 0, 1, 6, 34, 216, 1566, 12840, 117696, 1193760, 13280520, 160841520, 2107021680, 29689833600, 447821503920, 7199590366080, 122907276334080, 2220524598297600, 42328747652446080, 849064844592518400, 17877531486897734400, 394246607165708774400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) = A184184(n,0). LINKS Patxi Laborde Zubieta, Occupied corners in tree-like tableaux, arXiv preprint arXiv:1505.06098 [math.CO], 2015. FORMULA G.f.: (1-z)*F(z-z^2), where F(z)=Sum(j!z^j, j>=0) (private communication from Vladeta Jovovic, May 26 2009). a(n) = Sum((-1)^{n-i}*i!*binomial(i+1,n-i), i=ceil((n-1)/2) .. n). G.f.: 1/Q(0), where Q(k)= 1 + x/(1-x) - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013 EXAMPLE a(4)=6 because we have (13)(24), (1432), (1342), (1423), (1243), and (1324). MAPLE a := proc (n) options operator, arrow: sum((-1)^(n-i)*factorial(i)*binomial(i+1, n-i), i = ceil((1/2)*n-1/2) .. n) end proc: seq(a(n), n = 0 .. 22); MATHEMATICA a[n_] := Sum[(-1)^(n-i)*i!*Binomial[i+1, n-i], {i, Ceiling[(n-1)/2], n}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 29 2017, from Maple *) CROSSREFS Cf. A184184. Sequence in context: A218893 A266431 A063090 * A216317 A230331 A267242 Adjacent sequences:  A184182 A184183 A184184 * A184186 A184187 A184188 KEYWORD nonn AUTHOR Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 14:50 EST 2018. Contains 317208 sequences. (Running on oeis4.)