This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184185 Number of permutations of {1,2,...,n} having no cycles of the form (i, i+1, i+2, ..., i+j-1) (j>=1). 1
 1, 0, 0, 1, 6, 34, 216, 1566, 12840, 117696, 1193760, 13280520, 160841520, 2107021680, 29689833600, 447821503920, 7199590366080, 122907276334080, 2220524598297600, 42328747652446080, 849064844592518400, 17877531486897734400, 394246607165708774400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) = A184184(n,0). LINKS Patxi Laborde Zubieta, Occupied corners in tree-like tableaux, arXiv preprint arXiv:1505.06098 [math.CO], 2015. FORMULA G.f.: (1-z)*F(z-z^2), where F(z)=Sum(j!z^j, j>=0) (private communication from Vladeta Jovovic, May 26 2009). a(n) = Sum((-1)^{n-i}*i!*binomial(i+1,n-i), i=ceil((n-1)/2) .. n). G.f.: 1/Q(0), where Q(k)= 1 + x/(1-x) - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013 EXAMPLE a(4)=6 because we have (13)(24), (1432), (1342), (1423), (1243), and (1324). MAPLE a := proc (n) options operator, arrow: sum((-1)^(n-i)*factorial(i)*binomial(i+1, n-i), i = ceil((1/2)*n-1/2) .. n) end proc: seq(a(n), n = 0 .. 22); MATHEMATICA a[n_] := Sum[(-1)^(n-i)*i!*Binomial[i+1, n-i], {i, Ceiling[(n-1)/2], n}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 29 2017, from Maple *) CROSSREFS Cf. A184184. Sequence in context: A218893 A266431 A063090 * A216317 A230331 A267242 Adjacent sequences:  A184182 A184183 A184184 * A184186 A184187 A184188 KEYWORD nonn,changed AUTHOR Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.