This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184154 Triangle read by rows: T(n,k) is the number of leaves at level k>=1 of the rooted tree having Matula-Goebel number n (n>=2). 2
 1, 0, 1, 2, 0, 0, 1, 1, 1, 0, 2, 3, 0, 2, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 1, 4, 0, 0, 2, 1, 2, 0, 3, 2, 0, 1, 0, 3, 1, 0, 0, 1, 0, 0, 2, 3, 1, 0, 0, 2, 1, 1, 1, 0, 3, 2, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 5, 0, 1, 0, 1, 1, 0, 2, 0, 2, 1, 2, 2, 0, 2, 1, 1, 3, 0, 2, 1, 3, 0, 1, 0, 0, 1, 1, 1, 3, 0, 1, 2, 2, 0, 0, 1, 0, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. Number of entries in row n is A109082(n) (n=2,3,...). REFERENCES F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143. I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142. I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22. D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273. LINKS FORMULA We give the recursive construction of the row generating polynomials P(n)=P(n,x). P(2)=x; if n = p(t) (=the t-th prime), then P(n)=x*P(t); if n=rs (r,s>=2), then P(n)=P(r)+P(s) (2nd Maple program yields P(n)). EXAMPLE Row n=7 is [0,2] because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 0 leaves at level 1 and 2 leaves at level 2. Row n=2^m is [m] because the rooted tree with Matula-Goebel number 2^m is a star with m edges. Triangle starts: 1; 0,1; 2; 0,0,1; 1,1; 0,2; 3; 0,2; MAPLE with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 2 then x elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: for n from 2 to 30 do seq(coeff(P(n), x, k), k = 1 .. degree(P(n))) end do; # yields sequence in triangular form with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 2 then x elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: for n from 2 to 30 do P(n) end do; CROSSREFS Cf. A109082. Sequence in context: A038498 A319510 A257217 * A284441 A257992 A060952 Adjacent sequences:  A184151 A184152 A184153 * A184155 A184156 A184157 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Oct 06 2011 EXTENSIONS Keyword tabf added by Michel Marcus, Apr 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:32 EDT 2019. Contains 328093 sequences. (Running on oeis4.)