login
A184103
a(n) = n-1+ceiling(n^2/16); complement of A184102.
3
1, 2, 3, 4, 6, 8, 10, 11, 14, 16, 18, 20, 23, 26, 29, 31, 35, 38, 41, 44, 48, 52, 56, 59, 64, 68, 72, 76, 81, 86, 91, 95, 101, 106, 111, 116, 122, 128, 134, 139, 146, 152, 158, 164, 171, 178, 185, 191, 199, 206, 213, 220, 228, 236, 244, 251, 260, 268, 276, 284, 293, 302, 311, 319, 329, 338, 347, 356, 366, 376, 386, 395, 406, 416, 426, 436, 447, 458, 469, 479
OFFSET
1,2
FORMULA
a(n) = n-1+ceiling(n^2/16).
a(n) = +2*a(n-1) -a(n-2) +a(n-8) -2*a(n-9) +a(n-10). - R. J. Mathar, Mar 11 2012
MATHEMATICA
a=16; b=0;
Table[n+Floor[(a*n+b)^(1/2)], {n, 100}] (* A184102 *)
Table[n-1+Ceiling[(n^2-b)/a], {n, 80}] (* A184103 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 6, 8, 10, 11, 14, 16}, 80] (* Harvey P. Dale, Jul 05 2019 *)
PROG
(PARI) a(n) = n-1+ceil(n^2/16); \\ Michel Marcus, Jul 13 2022
CROSSREFS
Cf. A184102.
Sequence in context: A047418 A335999 A026508 * A352318 A284038 A285302
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 09 2011
EXTENSIONS
Name and formula corrected by Michel Marcus, Jul 13 2022
STATUS
approved