login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183912 T(n,k)=Number of nondecreasing arrangements of n+2 numbers in 0..k with each number being the sum mod (k+1) of two others 8
2, 1, 3, 2, 4, 4, 1, 5, 10, 5, 2, 2, 17, 17, 6, 1, 8, 20, 38, 25, 7, 2, 1, 37, 66, 67, 34, 8, 1, 5, 22, 124, 148, 105, 44, 9, 2, 4, 40, 136, 309, 275, 153, 55, 10, 1, 4, 31, 207, 470, 637, 457, 212, 67, 11, 2, 1, 47, 231, 778, 1193, 1163, 705, 283, 80, 12, 1, 10, 18, 294, 1093, 2199 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

..2..1...2....1....2.....1.....2.....1......2......1......2.......1......2

..3..4...5....2....8.....1.....5.....4......4......1.....10.......1......3

..4.10..17...20...37....22....40....31.....47.....18.....63......19.....55

..5.17..38...66..124...136...207...231....294....216....414.....217....430

..6.25..67..148..309...470...778..1093...1504...1636...2521....2217...3249

..7.34.105..275..637..1193..2199..3631...5596...7613..11744...13590..19258

..8.44.153..457.1163..2525..5126..9576..16366..25833..42161...57825..85989

..9.55.212..705.1953..4752.10501.21660..40449..71306.124219..192247.304552

.10.67.283.1031.3085..8238.19630.43980..88692.170734.316708..538177.907230

.11.80.367.1448.4650.13438.34274.82453.177974.368699.724961.1329686

Each column is eventually equal to a polynomial in n (see link). - Robert Israel, Apr 05 2018

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..238

Robert Israel, Proof of comment

EXAMPLE

All solutions for n=3, k=2

..1....0....0....0....0....0....1....0....0....0

..1....1....0....0....0....1....1....0....0....1

..2....2....1....0....0....1....1....1....0....1

..2....2....1....0....2....1....2....2....1....2

..2....2....2....0....2....2....2....2....1....2

MAPLE

k:= 3: N:= 20: # to produce T(n, k) for n=2..N

q:= proc(S, x) local L, m, i;

m:= nops(S);

L:= convert(x+3^m, base, 3)[1..m];

[seq([S[i], L[i]+1], i=1..m)];

end proc:

enlarge:= proc(S) local m, j;

seq(q(S, j), j=0..3^nops(S)-1)

end proc:

States:= map(enlarge, combinat:-powerset([$0..k])): ns:= nops(States):

T:= Matrix(ns, ns):

for j from 1 to ns do

S:= States[j];

if nops(S)=1 and S[1][2]=1 then T[1, j]:= 1 fi

od:

for i from 2 to ns do

S:= States[i]; P:= S[-1];

Sp:= subs(P=[P[1], min(3, P[2]+1)], S);

member(Sp, States, 'j');

T[i, j]:= 1;

for sp from P[1]+1 to k do

Sp:= [op(S), [sp, 1]];

member(Sp, States, 'j');

T[i, j]:= 1

od

od:

v:= Vector[row]([1, 0$(ns-1)]):

good:= proc(s) local L:

L:= map(p -> p[1]$p[2], States[s]);

andmap(j -> member(L[j], [seq(seq(L[i]+L[ip] mod (k+1), ip = {$i+1..nops(L)} minus {j}), i=[$1..j-1, $(j+1)..nops(L)])]),

[$1..nops(L)])

end proc:

goodS:= select(good, [$1..ns]):

vT[0]:= v:

for i from 1 to N+2 do vT[i]:= vT[i-1] . T od:

seq(convert(vT[i][goodS], `+`), i=3..N+2); # Robert Israel, Apr 05 2018

CROSSREFS

Sequence in context: A008584 A352833 A034390 * A144693 A328399 A328171

Adjacent sequences: A183909 A183910 A183911 * A183913 A183914 A183915

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Jan 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 22:56 EST 2022. Contains 358406 sequences. (Running on oeis4.)