login
A183911
Number of nondecreasing arrangements of n+2 numbers in 0..8 with each number being the sum mod 9 of two others.
1
1, 4, 31, 231, 1093, 3631, 9576, 21660, 43980, 82453, 145376, 244106, 393876, 614764, 932833, 1381461, 2002881, 2849952, 3988183, 5498033, 7477511, 10045101, 13343038, 17540962, 22839978, 29477151, 37730466, 47924284, 60435326, 75699218
OFFSET
1,2
COMMENTS
Column 8 of A183912.
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 + (13/10080)*n^7 + (83/2880)*n^6 + (13/36)*n^5 + (15967/5760)*n^4 - (45839/1440)*n^3 + (59583/1120)*n^2 + (20743/168)*n - 297 for n>3.
Conjectures from Colin Barker, Apr 06 2018: (Start)
G.f.: x*(1 - 5*x + 31*x^2 + 12*x^3 - 80*x^4 - 116*x^5 + 327*x^6 - 120*x^7 - 147*x^8 + 120*x^9 - 20*x^10 - 2*x^11) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
EXAMPLE
All solutions for n=2:
..0....0....3....0
..3....0....3....3
..3....0....6....6
..6....0....6....6
CROSSREFS
Cf. A183912.
Sequence in context: A124033 A014537 A136284 * A039765 A001091 A309184
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2011
STATUS
approved