login
A183857
a(n) = n - 1 + ceiling((2/3)*n^2); complement of A183874.
1
1, 4, 8, 14, 21, 29, 39, 50, 62, 76, 91, 107, 125, 144, 164, 186, 209, 233, 259, 286, 314, 344, 375, 407, 441, 476, 512, 550, 589, 629, 671, 714, 758, 804, 851, 899, 949, 1000, 1052, 1106, 1161, 1217, 1275, 1334, 1394, 1456, 1519, 1583, 1649, 1716, 1784, 1854, 1925, 1997, 2071
OFFSET
1,2
FORMULA
a(n) = n - 1 + ceiling((2/3)n^2).
MATHEMATICA
a=3/2; b=0;
Table[n+Floor[(a*n+b)^(1/2)], {n, 100}]
Table[n-1+Ceiling[(n*n-b)/a], {n, 80}]
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 4, 8, 14, 21}, 60] (* Harvey P. Dale, Apr 12 2020 *)
CROSSREFS
Cf. A183874.
Sequence in context: A312698 A312699 A131937 * A088804 A374505 A344012
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 07 2011
STATUS
approved