Maple-assisted proof of empirical formula for A183628

Robert Israel

30 March 2018
There are $3^{6}=729$ possible configurations for a row. Consider the 729×729 transition matrix T such that $T_{i j}=1$ if the bottom rows of a 2×6 sub-array could be in configuration i while the top row is in configuration j (i.e. each 2×2 block has sum 4), and 0 otherwise. The following Maple code computes it. I'm encoding a row $\left[\begin{array}{llllll}b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6}\end{array}\right]$ as $b+1$ where $b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$ is the base- 3 representation of b. The +1 is needed because matrix indices start at 1 rather than 0 .

```
> q:= proc(a,b) local A,B;
    A:= convert(a-1+3^6,base,3) [1..6];
    B:= convert(b-1+3^6,base,3) [1..6];
        `if`(`and`(seq(A[i]+A[i+1]+B[i] +B[i+1]=4,i=1..5)),1,0)
    end proc:
    T:= Matrix(3^6,3^6, q) :
```

Thus $a(n)=u T^{n} v$ where u and v are row and column vectors respectively of all 1 's.
$\left[>\mathrm{u}:=\operatorname{Vector}[\right.$ row $]\left(3^{\wedge} 6,1\right)$:
v:= Vector(3^6,1):
To check, here are the first few entries of our sequence.
$\left[\begin{array}{l}\mathrm{V}[0]:=\mathrm{v}: \\ \text { for } \mathrm{n} \text { from } 1 \text { to } 10 \text { do } \mathrm{V}[\mathrm{n}]:=\mathrm{T} . \mathrm{V}[\mathrm{n}-1] \text { od: }\end{array}\right.$
\gg seq (u $\cdot \mathrm{V}[\mathrm{n}], \mathrm{n}=1 \ldots 10) ;$
$859,1125,1675,2829,5299,10725,23035,52029,123139,304725$
Now here is the minimal polynomial P of T, as computed by Maple.
[> P:= unapply (LinearAlgebra:-MinimalPolynomial (T, t), t);

$$
\begin{equation*}
P:=t \mapsto t^{6}-3 t^{5}-5 t^{4}+15 t^{3}+4 t^{2}-12 t \tag{2}
\end{equation*}
$$

This turns out to have degree 6. Thus we will have $0=u P(T) T^{n} v=\sum_{i=0}^{6} p_{i} a(i+n)$ where p_{i} is the coefficient of t^{i} in $P(t)$. That corresponds to a homogeneous linear recurrence of order 6 , which would hold true for any u and v. It seems that with our particular u and v we have a recurrence of order only 3 , corresponding to a factor of P.

$$
\left[\begin{array}{l}
>\text { factor }(\mathrm{P}(\mathrm{t})) ; \\
>\mathrm{Q}:=\text { unapply (expand }((\mathrm{t}-1) *(\mathrm{t}-2) *(\mathrm{t}-3)), \quad \mathrm{t}) ; \\
Q:=t \mapsto t^{3}-6 t^{2}+11 t-6
\end{array}\right.
$$

The complementary factor $R(t)=\frac{P(t)}{Q(t)}$ has degree 3 .

$$
\begin{array}{r}
>\mathrm{R}:=\text { unapply (normal }(\mathrm{P}(\mathrm{t}) / \mathrm{Q}(\mathrm{t})), \mathrm{t}) ; \\
R:=t \mapsto\left(t^{2}+3 t+2\right) t \tag{5}
\end{array}
$$

Now we want to show that $b(n)=u Q(T) T^{n} v=0$ for all n. This will certainly satisfy the order- 3 recurrence

$$
\sum_{i=0}^{3} r_{i} b(i+n)=\sum_{i=0}^{3} r_{i} u Q(T) T^{n+i} v=u Q(T) R(T) T^{n} v=u P(T) T^{n} v=0
$$

where r_{i} are the coefficients of $R(t)$. To show all $b(n)=0$ it suffices to show $b(0)=\ldots=b(2)=0$.

$$
\begin{align*}
& {\left[>\mathrm{uQT}:=\mathrm{u} \cdot \mathrm{Q}(\mathrm{~T}): \operatorname{seq}\left(\mathrm{uQT} \cdot \underset{0,0}{\mathrm{~V}[\mathrm{n}], \mathrm{n}=0 \ldots 2) \text {; }} \begin{array}{l}
0,0
\end{array}\right.\right.} \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \text { (3) }=1675 \text { \}, } a(n)) \text {; } \\
& 1242^{n}+33^{n}+602 \tag{7}\\
& \text { > gf:= sum(\%*x^n, n=1..infinity,formal); } \\
& g f:=\frac{-4374 x^{3}+4029 x^{2}-859 x}{6 x^{3}-11 x^{2}+6 x-1} \tag{8}
\end{align*}
$$

