The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183562 Number of partitions of n containing a clique of size 5. 12
 1, 0, 1, 1, 2, 3, 5, 5, 9, 11, 16, 21, 31, 36, 52, 65, 88, 110, 148, 180, 238, 295, 379, 469, 600, 731, 926, 1133, 1413, 1725, 2141, 2590, 3194, 3864, 4719, 5692, 6924, 8301, 10049, 12026, 14468, 17263, 20694, 24586, 29359, 34804, 41372 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,5 COMMENTS All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique. LINKS Alois P. Heinz, Table of n, a(n) for n = 5..1000 FORMULA G.f.: (1-Product_{j>0} (1-x^(5*j)+x^(6*j))) / (Product_{j>0} (1-x^j)). EXAMPLE a(11) = 5, because 5 partitions of 11 contain (at least) one clique of size 5: [1,1,1,1,1,2,2,2], [1,2,2,2,2,2], [1,1,1,1,1,3,3], [1,1,1,1,1,2,4], [1,1,1,1,1,6]. MAPLE b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],       add((l->`if`(j=5, [l[1]\$2], l))(b(n-i*j, i-1)), j=0..n/i)))     end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=5..55); MATHEMATICA max = 55; f = (1 - Product[1 - x^(5j) + x^(6j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 5] (* Jean-François Alcover, Oct 01 2014 *) Table[Count[IntegerPartitions[n, {5, PartitionsP[n]}], _?(MemberQ[ Length/@ Split[ #], 5]&)], {n, 5, 60}] (* Harvey P. Dale, Feb 02 2019 *) CROSSREFS 5th column of A183568. Cf. A000041, A183558, A183559, A183560, A183561, A183563, A183564, A183565, A183566, A183567. Sequence in context: A108962 A091608 A317081 * A222705 A241381 A237365 Adjacent sequences:  A183559 A183560 A183561 * A183563 A183564 A183565 KEYWORD nonn AUTHOR Alois P. Heinz, Jan 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 02:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)