login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183562 Number of partitions of n containing a clique of size 5. 12
1, 0, 1, 1, 2, 3, 5, 5, 9, 11, 16, 21, 31, 36, 52, 65, 88, 110, 148, 180, 238, 295, 379, 469, 600, 731, 926, 1133, 1413, 1725, 2141, 2590, 3194, 3864, 4719, 5692, 6924, 8301, 10049, 12026, 14468, 17263, 20694, 24586, 29359, 34804, 41372 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,5

COMMENTS

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 5..1000

FORMULA

G.f.: (1-Product_{j>0} (1-x^(5*j)+x^(6*j))) / (Product_{j>0} (1-x^j)).

EXAMPLE

a(11) = 5, because 5 partitions of 11 contain (at least) one clique of size 5: [1,1,1,1,1,2,2,2], [1,2,2,2,2,2], [1,1,1,1,1,3,3], [1,1,1,1,1,2,4], [1,1,1,1,1,6].

MAPLE

b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],

      add((l->`if`(j=5, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))

    end:

a:= n-> (l-> l[2])(b(n, n)):

seq(a(n), n=5..55);

MATHEMATICA

max = 55; f = (1 - Product[1 - x^(5j) + x^(6j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 5] (* Jean-Fran├žois Alcover, Oct 01 2014 *)

Table[Count[IntegerPartitions[n, {5, PartitionsP[n]}], _?(MemberQ[ Length/@ Split[ #], 5]&)], {n, 5, 60}] (* Harvey P. Dale, Feb 02 2019 *)

CROSSREFS

5th column of A183568. Cf. A000041, A183558, A183559, A183560, A183561, A183563, A183564, A183565, A183566, A183567.

Sequence in context: A108962 A091608 A317081 * A222705 A241381 A237365

Adjacent sequences:  A183559 A183560 A183561 * A183563 A183564 A183565

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jan 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 02:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)