The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183559 Number of partitions of n containing a clique of size 2. 12
 1, 0, 2, 2, 3, 5, 9, 10, 16, 23, 31, 43, 60, 75, 106, 140, 179, 237, 310, 389, 508, 647, 815, 1032, 1305, 1617, 2033, 2527, 3117, 3857, 4764, 5812, 7142, 8711, 10585, 12866, 15605, 18803, 22716, 27325, 32774, 39286, 47016, 56019, 66819, 79456, 94273, 111766 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique. LINKS Alois P. Heinz, Table of n, a(n) for n = 2..1000 FORMULA G.f.: (1-Product_{j>0} (1-x^(2*j)+x^(3*j))) / (Product_{j>0} (1-x^j)). EXAMPLE a(7) = 5, because 5 partitions of 7 contain (at least) one clique of size 2: [1,1,1,2,2], [1,1,2,3], [2,2,3], [1,3,3], [1,1,5]. MAPLE b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],       add((l->`if`(j=2, [l[1]\$2], l))(b(n-i*j, i-1)), j=0..n/i)))     end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=2..50); MATHEMATICA max = 50; f = (1 - Product[1 - x^(2j) + x^(3j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 2] (* Jean-François Alcover, Oct 01 2014 *) CROSSREFS Column k=2 of A183568. Cf. A000041, A183558, A183560, A183561, A183562, A183563, A183564, A183565, A183566, A183567. Sequence in context: A039822 A025591 A028409 * A080553 A226956 A141602 Adjacent sequences:  A183556 A183557 A183558 * A183560 A183561 A183562 KEYWORD nonn AUTHOR Alois P. Heinz, Jan 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 18:14 EST 2020. Contains 332005 sequences. (Running on oeis4.)