%I #5 Mar 31 2012 12:35:51
%S 1,2,2,3,6,3,4,12,12,4,6,28,33,28,6,9,68,111,111,68,9,13,156,374,550,
%T 374,156,13,19,368,1205,2769,2769,1205,368,19,28,872,4003,13338,21280,
%U 13338,4003,872,28,41,2048,13229,66012,153291,153291,66012,13229,2048,41,60
%N T(n,k)=Number of nXk binary arrays with every element equal to either the sum mod 2 of its vertical neighbors or the sum mod 2 of its horizontal neighbors
%C Table starts
%C ..1....2......3.......4.........6...........9............13.............19
%C ..2....6.....12......28........68.........156...........368............872
%C ..3...12.....33.....111.......374........1205..........4003..........13229
%C ..4...28....111.....550......2769.......13338.........66012.........326010
%C ..6...68....374....2769.....21280......153291.......1140298........8501730
%C ..9..156...1205...13338....153291.....1625205......17932076......198519483
%C .13..368...4003...66012...1140298....17932076.....295884064.....4899909637
%C .19..872..13229..326010...8501730...198519483....4899909637...121507526212
%C .28.2048..43561.1605094..63020066..2180670106...80382466165..2979497367017
%C .41.4832.143984.7924940.468581721.24048268539.1325242681656.73489774062359
%H R. H. Hardin, <a href="/A183474/b183474.txt">Table of n, a(n) for n = 1..241</a>
%e Some solutions for 5X4
%e ..1..1..1..1....0..0..0..0....0..0..0..0....1..1..0..0....0..1..1..0
%e ..1..1..1..1....1..1..0..0....0..0..1..1....1..1..0..1....0..1..1..0
%e ..0..0..0..0....1..1..0..1....1..0..1..0....0..1..1..1....0..0..0..0
%e ..0..0..0..0....1..0..1..1....1..1..0..1....1..0..1..1....0..1..1..1
%e ..0..1..1..0....0..0..0..0....1..0..1..1....1..0..1..1....0..1..1..1
%Y Column 1 is A000930(n+1)
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Jan 05 2011