login
A183469
Number of nX4 binary arrays with every element equal to either the sum mod 2 of its vertical neighbors or the sum mod 2 of its horizontal neighbors
1
4, 28, 111, 550, 2769, 13338, 66012, 326010, 1605094, 7924940, 39109123, 192971113, 952409721, 4700295351, 23196736485, 114482463703, 564998794109, 2788411309415, 13761538059788, 67916728397389, 335186625133799
OFFSET
1,1
COMMENTS
Column 4 of A183474
LINKS
FORMULA
Empirical: a(n)=4*a(n-1)+2*a(n-2)+43*a(n-3)-120*a(n-4)-28*a(n-5)-843*a(n-6)+1176*a(n-7)-295*a(n-8)+8176*a(n-9)-4388*a(n-10)+7759*a(n-11)-37223*a(n-12)+7835*a(n-13)-46292*a(n-14)+89188*a(n-15)-10524*a(n-16)+120676*a(n-17)-118801*a(n-18)+2332*a(n-19)-165492*a(n-20)+73493*a(n-21)+32085*a(n-22)+126221*a(n-23)+24117*a(n-24)-42421*a(n-25)-43901*a(n-26)-35527*a(n-27)+9272*a(n-28)+9759*a(n-29)-9458*a(n-30)+2573*a(n-31)-11427*a(n-32)+1448*a(n-33)+2224*a(n-34)-2291*a(n-35)+1897*a(n-36)-661*a(n-37)-27*a(n-38)+297*a(n-39)+27*a(n-40)-66*a(n-41)+3*a(n-42)-15*a(n-43)-2*a(n-44)+4*a(n-45)
EXAMPLE
Some solutions for 6X4
..1..1..0..1....0..0..1..1....1..1..0..1....1..1..0..0....0..0..0..0
..0..0..1..1....0..0..1..1....0..0..0..1....1..1..0..0....0..0..0..0
..1..1..0..1....0..0..1..1....0..0..0..0....1..1..0..1....0..1..1..0
..0..1..0..0....0..0..1..1....0..1..1..1....1..1..1..1....0..0..0..0
..1..0..0..0....0..0..1..1....0..0..1..1....1..0..1..1....1..0..0..1
..1..1..0..0....0..0..0..0....0..1..1..1....0..0..1..1....1..0..0..1
CROSSREFS
Sequence in context: A092712 A202964 A352322 * A058227 A296392 A318011
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 05 2011
STATUS
approved