Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:35:51
%S 1,1,1,2,3,2,3,11,11,3,4,19,32,19,4,21,59,69,69,59,21,40,309,498,199,
%T 498,309,40,60,685,1621,1577,1577,1621,685,60,344,2317,4364,6125,8702,
%U 6125,4364,2317,344,706,11977,30246,20625,42613,42613,20625,30246,11977,706
%N T(n,k)=Number of (n+4)X(k+4) binary arrays with every 1 having exactly three king-move neighbors equal to 1 but with no 2X2 blocks of 1s
%C Table starts
%C ...1.....1......2.......3........4........21..........40...........60
%C ...1.....3.....11......19.......59.......309.........685.........2317
%C ...2....11.....32......69......498......1621........4364........30246
%C ...3....19.....69.....199.....1577......6125.......20625.......153353
%C ...4....59....498....1577.....8702.....42613......210362......1459669
%C ..21...309...1621....6125....42613....248303.....1724088.....13731628
%C ..40...685...4364...20625...210362...1724088....15282749....158811752
%C ..60..2317..30246..153353..1459669..13731628...158811752...2019698992
%C .344.11977.103071..622193..7676361..97119162..1460794339..23019242424
%C .706.30233.318890.2445793.44631710.756707222.14117917139.278157171202
%H R. H. Hardin, <a href="/A183465/b183465.txt">Table of n, a(n) for n = 1..179</a>
%e Some solutions for 8X7
%e ..0..0..1..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
%e ..0..1..1..1..0..0..0....0..0..0..1..0..0..0....0..0..0..0..0..0..0
%e ..1..0..0..0..1..0..0....0..0..1..1..1..0..0....0..0..0..0..0..0..0
%e ..1..1..0..0..1..1..0....0..1..0..0..0..1..0....0..0..1..1..1..0..0
%e ..1..0..0..0..1..0..0....0..1..1..0..0..1..1....0..1..0..1..0..1..0
%e ..0..1..1..1..0..0..0....0..0..1..0..0..0..1....1..1..0..0..0..1..1
%e ..0..0..1..0..0..0..0....0..0..0..1..1..1..0....0..1..0..1..0..1..0
%e ..0..0..0..0..0..0..0....0..0..0..0..1..0..0....0..0..1..1..1..0..0
%K nonn,tabl
%O 1,4
%A _R. H. Hardin_ Jan 05 2011