login
A183409
Number of n X 2 binary arrays with each sum of a(1..i,1..j) no greater than i*j/2 and rows and columns in nondecreasing order.
1
2, 5, 8, 15, 21, 34, 44, 65, 80, 111, 132, 175, 203, 260, 296, 369, 414, 505, 560, 671, 737, 870, 948, 1105, 1196, 1379, 1484, 1695, 1815, 2056, 2192, 2465, 2618, 2925, 3096, 3439, 3629, 4010, 4220, 4641, 4872, 5335, 5588, 6095, 6371, 6924, 7224, 7825, 8150
OFFSET
1,1
COMMENTS
Column 2 of A183413.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
Conjecture: a(n) = (2*n^3+11*n^2+31*n+27+(n^2+n+5)*(-1)^n)/32. - Luce ETIENNE, Nov 18 2014
Empirical g.f.: x*(2 + 3*x - 3*x^2 - 2*x^3 + 3*x^4 + x^5 - x^6) / ((1 - x)^4*(1 + x)^3). - Colin Barker, Mar 29 2018
EXAMPLE
Some solutions for 4 X 2:
..0..0....0..0....0..0....0..0....0..0....0..1....0..1....0..0....0..0....0..1
..0..0....0..1....0..0....0..1....0..0....0..1....0..1....0..1....0..0....0..1
..0..0....1..0....0..0....0..1....0..1....0..1....1..0....1..0....0..1....0..1
..1..1....1..1....0..1....0..1....1..0....1..0....1..0....1..0....0..1....0..1
CROSSREFS
Cf. A183413.
Sequence in context: A309546 A261543 A307190 * A262867 A024808 A238619
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2011
STATUS
approved