%I #5 Mar 31 2012 12:35:51
%S 1,2,2,4,2,4,8,2,2,8,16,8,6,8,16,32,18,32,32,18,32,64,50,110,242,110,
%T 50,64,128,128,450,1152,1152,450,128,128,256,338,1680,6962,8366,6962,
%U 1680,338,256,512,882,6498,38642,72962,72962,38642,6498,882,512,1024,2312
%N T(n,k)=Half the number of nXk binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors
%C Same solutions for no element unequal to a strict majority of its neighbors, via xor with a 0101... stripe pattern
%C Table starts
%C ...1....2.....4.......8........16..........32............64............128
%C ...2....2.....2.......8........18..........50...........128............338
%C ...4....2.....6......32.......110.........450..........1680...........6498
%C ...8....8....32.....242......1152........6962.........38642.........220448
%C ..16...18...110....1152......8366.......72962........592416........4948658
%C ..32...50...450....6962.....72962......938450......11319282......139678898
%C ..64..128..1680...38642....592416....11319282.....202832490.....3698688032
%C .128..338..6498..220448...4948658...139678898....3698688032....99698985800
%C .256..882.24794.1267232..41522206..1739674098...68428470200..2731826901458
%C .512.2312.95048.7242818.347213952.21566321928.1257828055362.74389478730002
%H R. H. Hardin, <a href="/A183402/b183402.txt">Table of n, a(n) for n = 1..475</a>
%e Some solutions with a(1,1)=0 for 5X4
%e ..0..1..0..0....0..1..0..0....0..0..0..0....0..0..0..1....0..1..0..0
%e ..0..1..1..0....0..1..1..1....1..1..1..0....1..1..0..1....0..1..1..1
%e ..0..1..1..0....1..1..1..0....0..0..1..0....1..0..0..1....0..0..0..0
%e ..0..0..1..0....0..0..1..0....1..1..1..0....1..0..0..0....1..0..1..1
%e ..1..0..1..0....1..0..1..0....0..0..0..0....1..1..1..1....1..0..1..0
%Y Column 2 is 2*A007598(n-1) for n>1
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Jan 04 2011