login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183400 Half the number of nX4 binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors 1
8, 8, 32, 242, 1152, 6962, 38642, 220448, 1267232, 7242818, 41641938, 239104712, 1373823362, 7896474450, 45382408992, 260867312672, 1499503275848, 8619568608008, 49548523781250, 284823670502898, 1637284504411250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 4 of A183402

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..200

FORMULA

Empirical: a(n)=7*a(n-1)+9*a(n-2)-97*a(n-3)-120*a(n-4)+838*a(n-5)+583*a(n-6)-4206*a(n-7)-624*a(n-8)+12123*a(n-9)-3315*a(n-10)-22752*a(n-11)+21049*a(n-12)+24140*a(n-13)-56478*a(n-14)-646*a(n-15)+83495*a(n-16)-31249*a(n-17)-80941*a(n-18)+37933*a(n-19)+66083*a(n-20)-26176*a(n-21)-52120*a(n-22)+18250*a(n-23)+33570*a(n-24)-14461*a(n-25)-14422*a(n-26)+8548*a(n-27)+3617*a(n-28)-3175*a(n-29)-362*a(n-30)+704*a(n-31)-43*a(n-32)-84*a(n-33)+12*a(n-34)+5*a(n-35)-a(n-36) for n>37

EXAMPLE

Some solutions with a(1,1)=0 for 6X4

..0..0..0..0....0..0..1..0....0..1..0..1....0..1..0..0....0..0..1..0

..1..1..1..0....1..1..1..0....1..1..0..0....0..1..1..1....1..1..1..0

..1..0..1..0....0..1..0..1....0..0..1..0....0..1..1..0....0..0..1..0

..1..0..1..0....0..0..0..1....1..1..1..0....0..0..1..0....1..0..1..0

..1..0..1..1....1..0..1..0....0..0..1..0....1..1..0..0....1..1..1..1

..1..0..0..0....1..0..1..0....1..1..1..0....0..1..1..1....0..0..0..0

CROSSREFS

Sequence in context: A143336 A053596 A141384 * A111218 A188275 A319019

Adjacent sequences:  A183397 A183398 A183399 * A183401 A183402 A183403

KEYWORD

nonn

AUTHOR

R. H. Hardin Jan 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)