login
A183383
Half the number of nX4 binary arrays with no element equal to a strict majority of its king-move neighbors
1
2, 9, 29, 109, 531, 2276, 9485, 41333, 179345, 769838, 3318436, 14331995, 61806029, 266512626, 1149721593, 4959529556, 21392085393, 92275053866, 398035409724, 1716936954230, 7406064472068, 31946418824054, 137802367508923
OFFSET
1,1
COMMENTS
Column 4 of A183386
LINKS
FORMULA
Empirical: a(n)=7*a(n-1)-15*a(n-2)+43*a(n-3)-155*a(n-4)+163*a(n-5)-355*a(n-6)+1192*a(n-7)-313*a(n-8)+1933*a(n-9)-5536*a(n-10)-1655*a(n-11)-7428*a(n-12)+14124*a(n-13)+6666*a(n-14)+14223*a(n-15)-23191*a(n-16)-5038*a(n-17)-12688*a(n-18)+19327*a(n-19)-3816*a(n-20)+12585*a(n-21)-6884*a(n-22)+1778*a(n-23)-7042*a(n-24)+3366*a(n-25)-594*a(n-26)-52*a(n-27)-152*a(n-28) for n>29
EXAMPLE
Some solutions for 5X4
..0..1..1..0....0..0..1..0....0..0..1..0....0..0..0..1....0..0..0..0
..1..0..0..1....1..1..1..0....1..1..1..0....1..1..1..0....1..1..1..1
..0..1..1..0....0..1..0..1....0..0..1..0....0..0..1..0....1..0..0..1
..0..1..0..1....0..1..0..1....1..1..1..0....1..0..1..0....0..0..0..0
..0..1..0..1....1..0..1..0....0..0..1..0....0..1..0..1....1..1..1..1
CROSSREFS
Sequence in context: A069006 A351191 A241774 * A280853 A360812 A268568
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 04 2011
STATUS
approved