%I #5 Mar 31 2012 12:35:50
%S 2,6,19,55,178,572,1798,5700,18064,57249,181433,574924,1821857,
%T 5773450,18295845,57978643,183731482,582236576,1845081304,5846978390,
%U 18528805856,58716935815,186071279593,589651361292,1868578146701,5921438527588
%N Half the number of nX4 binary arrays with no element equal to a strict majority of its horizontal and vertical neighbors
%C Column 4 of A183312
%H R. H. Hardin, <a href="/A183305/b183305.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n)=5*a(n-1)-6*a(n-2)+a(n-3)+a(n-4)-9*a(n-5)+4*a(n-6)+a(n-7)+28*a(n-8)-16*a(n-9)-3*a(n-10)+2*a(n-11)-6*a(n-12)+2*a(n-13)-a(n-14) for n>15
%e Some solutions with a(1,1)=0 for 4X4
%e ..0..1..0..1....0..1..1..0....0..0..1..0....0..1..0..0....0..1..0..1
%e ..1..0..1..0....1..0..0..1....1..1..0..1....1..0..1..1....0..1..1..0
%e ..0..1..1..0....0..0..1..0....0..1..1..0....0..0..1..0....1..0..1..1
%e ..0..1..0..1....1..1..0..1....1..0..0..1....1..1..0..1....0..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 03 2011