%I #12 Jun 28 2024 04:22:43
%S 3,60,116,28440,150979,20021342,174883800,15784256016,190371233229,
%T 13214123612340,200102144807730,11502955439818200,205999922595853530,
%U 10299233834557356076,209367465185057238144,9421571590734744149556,211077609046668511646118,8765504736339948725175906
%N Half the number of n X 5 binary arrays with the number of 1-1 horizontal, vertical, diagonal and antidiagonal adjacencies equal to the number of 0-0 adjacencies.
%C Column 5 of A183289.
%H R. H. Hardin, <a href="/A183286/b183286.txt">Table of n, a(n) for n = 1..200</a>
%e Some solutions for 4 X 5 with a(1,1) = 0:
%e ..0..0..1..0..1....0..0..0..0..0....0..1..1..1..0....0..0..1..1..0
%e ..0..0..1..0..1....1..1..1..0..0....1..0..1..1..0....1..0..1..0..1
%e ..0..0..1..1..0....1..0..1..0..1....0..1..0..1..0....1..0..1..1..0
%e ..0..1..1..1..1....1..1..1..0..1....1..0..0..0..0....1..0..0..0..1
%Y Cf. A183289.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 03 2011