OFFSET
0,3
COMMENTS
Equals sums of the 6th power of terms in rows of the triangle of multinomial coefficients (A036038).
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n/n!^6 = Product_{n>=1} 1/(1 - x^n/n!^6).
EXAMPLE
G.f.: A(x) = 1 + x + 65*x^2/2!^6 + 47386*x^3/3!^6 + 194139713*x^4/4!^6 +...
A(x) = 1/((1-x)*(1-x^2/2!^6)*(1-x^3/3!^6)*(1-x^4/4!^6)*...).
PROG
(PARI) {a(n)=n!^6*polcoeff(1/prod(k=1, n, 1-x^k/k!^6 +x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2011
STATUS
approved