login
G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} (1 + x^n/n!^2).
4

%I #7 Apr 23 2022 16:22:03

%S 1,1,1,10,17,126,3862,12741,110609,1929430,167593826,845443941,

%T 11064102326,178820437901,7538334414717,1483432379403435,

%U 10962589471724049,189591619730952006,3827839859607324106

%N G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} (1 + x^n/n!^2).

%e G.f.: A(x) = 1 + x + x^2/2!^2 + 10*x^3/3!^2 + 17*x^4/4!^2 +...

%e A(x) = (1 + x)*(1 + x^2/2!^2)*(1 + x^3/3!^2)*(1 + x^4/4!^2)*...

%o (PARI) {a(n)=n!^2*polcoeff(prod(k=1, n, 1+x^k/k!^2 +x*O(x^n)), n)}

%Y Cf. A183230, A007837.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Jan 04 2011