login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^2-x^3-x^4-2*x^5)]^m = sum(n>=m, T(n,m) x^n). 0
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 17, 28, 25, 14, 5, 1, 33, 66, 66, 44, 20, 6, 1, 66, 148, 171, 129, 70, 27, 7, 1, 132, 330, 425, 364, 225, 104, 35, 8, 1, 264, 728, 1035, 984, 686, 363, 147, 44, 9, 1, 529, 1592, 2475, 2584, 1995, 1188, 553, 200, 54, 10, 1, 1057, 3459, 5830, 6624, 5600, 3689, 1932, 806, 264, 65, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..78.

FORMULA

T(n,i):=sum(k=0..n-i, binomial(k+i-1,i-1)*sum(r=0..k, binomial(k,r)*sum(m=0..r, binomial(r,m)*sum(j=0..m, binomial(j,-r+n-m-k-j-i)*binomial(m,j)*2^(-r+n-m-k-j-i))))).

EXAMPLE

1,

1, 1,

2, 2, 1,

4, 5, 3, 1,

8, 12, 9, 4, 1,

17, 28, 25, 14, 5, 1,

33, 66, 66, 44, 20, 6, 1,

PROG

(Maxima)

T(n, i):=sum(binomial(k+i-1, i-1)*sum(binomial(k, r)*sum(binomial(r, m)*sum(binomial(j, -r+n-m-k-j-i)*binomial(m, j)*2^(-r+n-m-k-j-i), j, 0, m), m, 0, r), r, 0, k), k, 0, n-i);

CROSSREFS

Sequence in context: A104580 A202193 A105306 * A273713 A322329 A064189

Adjacent sequences:  A183188 A183189 A183190 * A183192 A183193 A183194

KEYWORD

nonn,tabl

AUTHOR

Vladimir Kruchinin, Dec 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 07:18 EST 2019. Contains 319269 sequences. (Running on oeis4.)