login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^2-x^3-x^4-2*x^5)]^m = sum(n>=m, T(n,m) x^n). 0
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 17, 28, 25, 14, 5, 1, 33, 66, 66, 44, 20, 6, 1, 66, 148, 171, 129, 70, 27, 7, 1, 132, 330, 425, 364, 225, 104, 35, 8, 1, 264, 728, 1035, 984, 686, 363, 147, 44, 9, 1, 529, 1592, 2475, 2584, 1995, 1188, 553, 200, 54, 10, 1, 1057, 3459, 5830, 6624, 5600, 3689, 1932, 806, 264, 65, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..78.

FORMULA

T(n,i):=sum(k=0..n-i, binomial(k+i-1,i-1)*sum(r=0..k, binomial(k,r)*sum(m=0..r, binomial(r,m)*sum(j=0..m, binomial(j,-r+n-m-k-j-i)*binomial(m,j)*2^(-r+n-m-k-j-i))))).

EXAMPLE

1,

1, 1,

2, 2, 1,

4, 5, 3, 1,

8, 12, 9, 4, 1,

17, 28, 25, 14, 5, 1,

33, 66, 66, 44, 20, 6, 1,

PROG

(Maxima)

T(n, i):=sum(binomial(k+i-1, i-1)*sum(binomial(k, r)*sum(binomial(r, m)*sum(binomial(j, -r+n-m-k-j-i)*binomial(m, j)*2^(-r+n-m-k-j-i), j, 0, m), m, 0, r), r, 0, k), k, 0, n-i);

CROSSREFS

Sequence in context: A104580 A202193 A105306 * A273713 A064189 A273897

Adjacent sequences:  A183188 A183189 A183190 * A183192 A183193 A183194

KEYWORD

nonn,tabl

AUTHOR

Vladimir Kruchinin, Dec 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 04:29 EDT 2018. Contains 316431 sequences. (Running on oeis4.)