OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..45
FORMULA
a(n) = [x^n] 1/(1 - 3^(n+1)*x)^(1/3^n).
G.f.: Sum_{n>=0} (-log(1 - x/3^n))^n/n! = Sum_{n>=0} a(n)*x^n/3^(n^2+n).
EXAMPLE
G.f.: A(x) = 1 + 3*x/3^2 + 45*x^2/3^6 + 6930*x^3/3^12 + 11006901*x^4/3^20 + 170914738743*x^5/3^30 +...
A(x) = 1 - log(1-x/3) + log(1-x/9)^2/2! - log(1-x/27)^3/3! + log(1-x/81)^4/4! +...+ (-1)^n*log(1-x/3^n)^n/n! +...
Illustrate a(n) = [x^n] 1/(1 - 3^(n+1)*x)^(1/3^n):
(1-9*x)^(-1/3) = 1 + (3)*x + 18*x^2 + 126*x^3 + 945*x^4 +...
(1-27*x)^(-1/9) = 1 + 3*x + (45)*x^2 + 855*x^3 + 17955*x^4 +...
(1-81*x)^(-1/27) = 1 + 3*x + 126*x^2 + (6930)*x^3 + 426195*x^4 +...
(1-243*x)^(-1/81) = 1 + 3*x + 369*x^2 + 60147*x^3 + (11006901)*x^4 +...
(1-729*x)^(-1/243) = 1 + 3*x + 1098*x^2 + 534726*x^3 + 292762485*x^4 + (170914738743)*x^5 +...
Special values.
A(1) = 1 + log(3/2) + log(9/8)^2/2! + log(27/26)^3/3! + log(81/80)^4/4! +...
A(-1) = 1 + log(3/4) + log(9/10)^2/2! + log(27/28)^3/3! + log(81/82)^4/4! +...
A(1/3) = 1 + log(9/8) + log(27/26)^2/2! + log(81/80)^3/3! + log(243/242)^4/4! +...
A(4/3) = 1 + log(9/5) + log(27/23)^2/2! + log(81/77)^3/3! + log(243/239)^4/4! +...
A(1) = 1.412410489973035808125672257400880...
A(-1) = 0.7178603309478784469203322438498398552...
A(-3) = 0.3480384480558263511525077084408616142...
A(3) is indeterminate.
PROG
(PARI) a(n)=3^(n^2+n)*binomial(n-1+1/3^n, n)
(PARI) {a(n)=3^(n^2+n)*polcoeff(1+sum(m=1, n, (-log(1 - x/3^m +x*O(x^n)))^m/m!), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2010
STATUS
approved