login
A183106
Numbers k such that sum of palindromic divisors of k (A088000(k)) is palindromic.
1
1, 2, 3, 4, 5, 7, 10, 13, 15, 17, 19, 21, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 103, 106, 107, 109, 112, 113, 115, 116, 118, 119
OFFSET
1,2
FORMULA
A088000(a(n)) = A183107(n).
EXAMPLE
a(12) = 21; palindromic divisors of 21: 1, 3, 7; their sum is 11 (palindromic number).
MAPLE
isA183106 := proc(n)
isA002113(A088000(n)) ;
end proc:
for n from 1 to 100 do
if isA183106(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Sep 09 2015
MATHEMATICA
q[k_] := PalindromeQ[DivisorSum[k, # &, PalindromeQ[#] &]]; Select[Range[120], q] (* Amiram Eldar, Aug 08 2024 *)
CROSSREFS
Subsequences: A334321, A334391.
Sequence in context: A117536 A104665 A094018 * A296610 A071682 A014670
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Dec 25 2010
EXTENSIONS
More terms from Amiram Eldar, Aug 08 2024
STATUS
approved