The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183091 a(n) is the product of the divisors p^k of n where p is prime and k >= 1. 5
 1, 2, 3, 8, 5, 6, 7, 64, 27, 10, 11, 24, 13, 14, 15, 1024, 17, 54, 19, 40, 21, 22, 23, 192, 125, 26, 729, 56, 29, 30, 31, 32768, 33, 34, 35, 216, 37, 38, 39, 320, 41, 42, 43, 88, 135, 46, 47, 3072, 343, 250, 51, 104, 53, 1458 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Product of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A007955(n) / A183092(n). Multiplicative with a(p^k) = p^(k*(k+1)/2). The Dirichlet g.f. of a(n) / abs(A153038(n)) is Product_{k >= 0} zeta(s+k). - Álvar Ibeas, Nov 10 2014 EXAMPLE For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1*2*3*4 = 24. MAPLE A183091 := proc(n) local a, d; a := 1 ; for d in numtheory[divisors](n) minus {1} do  if nops( numtheory[factorset](d)) = 1 then a := a*d; end if; end do: a ; end proc: # R. J. Mathar, Apr 14 2011 MATHEMATICA Table[Product[d, {d, Select[Divisors[n], Length[FactorInteger[#]] == 1 &]}], {n, 1, 54}] (* Geoffrey Critzer, Mar 18 2015 *) PROG (Haskell) a183091 = product . a210208_row  -- Reinhard Zumkeller, Mar 18 2012 (PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, f[i, 1]^binomial(f[i, 2]+1, 2)) \\ Charles R Greathouse IV, Nov 11 2014 CROSSREFS Cf. A023888. Sequence in context: A102631 A100782 A110340 * A308360 A324364 A265344 Adjacent sequences:  A183088 A183089 A183090 * A183092 A183093 A183094 KEYWORD nonn,mult AUTHOR Jaroslav Krizek, Dec 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 16:05 EDT 2020. Contains 336255 sequences. (Running on oeis4.)